Exact Numerical Perturbation ∗

نویسندگان

  • Koji Ouchi
  • John Keyser
چکیده

We present our exact numerical perturbation technique for eliminating degeneracies occurring in geometric modeling processes. Consider a geometric modeler that performs a set of geometric operations (e.g. CSG-based Boolean operations). We would like to make the geometric modeler “robust” with respect to degeneracies, meaning that it will not crash. Our approach achieves many of the same results as symbolic perturbation, but requires very little algorithmic adjustment. Our perturbation technique differs significantly from the other methods (such as fixed-precision perturbation) in the following ways: First, exact computation is used in order to avoid problems caused by numerical errors. Unlike the methods using fixed precision arithmetic or interval arithmetic, there is no need to keep track of errors ∗This work funded in part by NSF awards DMS-0138446 and CCR-0220047

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical solution of seven-order Sawada-Kotara equations by homotopy perturbation method

In this paper, an application of homotopy perturbation method is appliedto nding the solutions of the seven-order Sawada-Kotera (sSK) and a Lax'sseven-order KdV (LsKdV) equations. Then obtain the exact solitary-wave so-lutions and numerical solutions of the sSK and LsKdV equations for the initialconditions. The numerical solutions are compared with the known analyticalsolutions. Their remarkabl...

متن کامل

Exact and numerical solutions of linear and non-linear systems of fractional partial differential equations

The present study introduces a new technique of homotopy perturbation method for the solution of systems of fractional partial differential equations. The proposed scheme is based on Laplace transform and new homotopy perturbation methods. The fractional derivatives are considered in Caputo sense. To illustrate the ability and reliability of the method some examples are provided. The results ob...

متن کامل

Numerical Solution of the Controlled Harmonic Oscillator by Homotopy Perturbation Method

‎The controlled harmonic oscillator with retarded damping‎, ‎is an important class of optimal control problems which has an important role in oscillating phenomena in nonlinear engineering systems‎. ‎In this paper‎, ‎to solve this problem‎, ‎we presented an analytical method‎. ‎This approach is based on the homotopy perturbation method‎. ‎The solution procedure becomes easier‎, ‎simpler and mor...

متن کامل

Analytical Solution of Steady State Substrate Concentration of an Immobilized Enzyme Kinetics by Laplace Transform Homotopy Perturbation Method

The nonlinear dynamical system modeling the immobilized enzyme kinetics with Michaelis-Menten mechanism for an irreversible reaction without external mass transfer resistance is considered. Laplace transform homotopy perturbation method is used to obtain the approximate solution of the governing nonlinear differential equation, which consists in determining the series solution convergent to the...

متن کامل

A new numerical scheme for solving systems of integro-differential equations

This paper has been devoted to apply the Reconstruction of Variational Iteration Method (RVIM) to handle the systems of integro-differential equations. RVIM has been induced with Laplace transform from the variational iteration method (VIM) which was developed from the Inokuti method. Actually, RVIM overcome to shortcoming of VIM method to determine the Lagrange multiplier. So that, RVIM method...

متن کامل

Parameter - uniform numerical methods for a class of singularly perturbed problems with a Neumann boundary condition

The error generated by the classical upwind finite difference method on a uniform mesh, when applied to a class of singularly perturbed model ordinary differential equations with a singularly perturbed Neumann boundary condition, tends to infinity as the singular perturbation parameter tends to zero. Note that the exact solution is uniformly bounded with respect to the perturbation parameter. F...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005